જો ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , હોય તો $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ ની કિમત મેળવો 

  • A

    $\left( {\frac{{{2^{21}} - 1}}{{21}}} \right)$

  • B

    $\left( {\frac{{{3^{21}} - 1}}{{21}}} \right)$

  • C

    $\left( {\frac{{{2^{20}} - 1}}{{20}}} \right)$

  • D

    $\left( {\frac{{{3^{20}} - 1}}{{20}}} \right)$

Similar Questions

જો $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^{ n } C _1+{ }^{ n } C _0=\frac{1023}{10}$ હોય,તો $n=..........$

  • [JEE MAIN 2023]

$(x-1) (x- 2) (x-3)...............(x-10)$ ના વિસ્તરણમાં $x^8$ નો સહગુણક મેળવો 

જો ${(x - 2y + 3z)^n}$ ના સહગુણકોનો સરવાળો $128$ હોય તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.

જો  $\mathrm{b}$ એ  $\mathrm{a}$ ની સાપેક્ષે ઘણો નાનો છે કે જેથી  $\frac{b}{a}$ ની ત્રણ કે તેથી મોટી ઘાતાંકને $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b} \ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ પદાવલિમાં  અવગણી શકાય તો $\gamma$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો ${ }^{20} \mathrm{C}_{\mathrm{r}}$ એ $(1+x)^{20}$ ના વિસ્તરણમાં $\mathrm{x}^{\mathrm{r}}$ નો સહગુણક દર્શાવે છે  તો $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]